Penalized Estimating Functions and Variable Selection in Semiparametric Regression Models.

نویسندگان

  • Brent A Johnson
  • D Y Lin
  • Donglin Zeng
چکیده

We propose a general strategy for variable selection in semiparametric regression models by penalizing appropriate estimating functions. Important applications include semiparametric linear regression with censored responses and semiparametric regression with missing predictors. Unlike the existing penalized maximum likelihood estimators, the proposed penalized estimating functions may not pertain to the derivatives of any objective functions and may be discrete in the regression coefficients. We establish a general asymptotic theory for penalized estimating functions and present suitable numerical algorithms to implement the proposed estimators. In addition, we develop a resampling technique to estimate the variances of the estimated regression coefficients when the asymptotic variances cannot be evaluated directly. Simulation studies demonstrate that the proposed methods perform well in variable selection and variance estimation. We illustrate our methods using data from the Paul Coverdell Stroke Registry.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Penalized Profiled Semiparametric Estimating Functions

In this paper, we propose a general class of penalized profiled semiparametric estimating functions which is applicable to a wide range of statistical models, including quantile regression, survival analysis, and missing data, among others. It is noteworthy that the estimating function can be non-smooth in the parametric and/or nonparametric components. Without imposing a specific functional st...

متن کامل

Model and Variable Selection Procedures for Semiparametric Time Series Regression

Semiparametric regression models are very useful for time series analysis. They facilitate the detection of features resulting from external interventions. The complexity of semiparametric models poses new challenges for issues of nonparametric and parametric inference and model selection that frequently arise from time series data analysis. In this paper, we propose penalized least squares est...

متن کامل

Penalized Bregman Divergence Estimation via Coordinate Descent

Variable selection via penalized estimation is appealing for dimension reduction. For penalized linear regression, Efron, et al. (2004) introduced the LARS algorithm. Recently, the coordinate descent (CD) algorithm was developed by Friedman, et al. (2007) for penalized linear regression and penalized logistic regression and was shown to gain computational superiority. This paper explores...

متن کامل

Variable Selection in Semiparametric Regression Modeling By

In this paper, we are concerned with how to select significant variables in semiparametric modeling. Variable selection for semiparametric regression models consists of two components: model selection for nonparametric components and selection of significant variables for the parametric portion. Thus, semiparametric variable selection is much more challenging than parametric variable selection ...

متن کامل

Variable Selection in Measurement Error Models.

Measurement error data or errors-in-variable data are often collected in many studies. Natural criterion functions are often unavailable for general functional measurement error models due to the lack of information on the distribution of the unobservable covariates. Typically, the parameter estimation is via solving estimating equations. In addition, the construction of such estimating equatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Statistical Association

دوره 103 482  شماره 

صفحات  -

تاریخ انتشار 2008